300C-I:机械刺激器
300C-I机械刺激器是一种自动化的电子von Frey设备,具有在单一应用点测量和控制力和长度的附加功能。300C-I消除了使用手持式Von Frey灯丝或其他手持式机械刺激器施力时的可变性和笨拙性。我们的计算机控制的机械刺激器消除了与von Frey灯丝和其他电子von Frey系统相关的不可避免的手部颤抖。这就消除了相关的施力变化。
Aurora Scientific的机械刺激器消除了为确定阈值而进行多次测试的需要,从而提高了产量。刺激的施力和时间是一致和精确的,从而消除了与手持设备有关的变化。
机械刺激器能够在预先设定的时间段内施加恒定的力,并具有按预先确定的速率调整力的附加功能。刺激可以以长度或力的任何组合来应用,并可以遵循任意的力或距离应用曲线,因此力的应用不限于简单的力的斜坡。
恒定和可重复的力的传递确保了实验、受试者和研究之间的一致性,从而减少了数据中可避免的错误,提高了研究结果的质量。
● 用计算机控制的刺激来量化机械敏感度
● 评估超阈值的机械敏感性
● 无需进行多次测试即可测量机械阈值
● 最大限度地减少离轴力
● 有一系列的针尖(0.5、0.8、1、1.5、2、3毫米直径)可供选择
● 在整个力的范围内,应用区域保持不变
● 力的范围。0.5N - 10N
● 优异的分辨率(达到0.3mN)
● 在任何方向操作
Kumar, Siddarth. et al. “Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies .” Journal of Biomechanical Engineering (2015) DOI: 10.1115/1.4029985
Schwaller et al. “USH2A is a Meissner’s corpuscle protein necessary for normal vibration sensing in mice and humans” Nature Neuroscience (2021) DOI: 10.1038/s41593-020-00751-y
Schwaller et al. “USH2A is a Meissner’s corpuscle protein necessary for normal vibration sensing in mice and humans” Nature Neuroscience (2021) DOI: 10.1038/s41593-020-00751-y
Bove, Geoffrey M., Daniel R. Robichaud, and Peter Grigg. “Three-dimensional load analysis of indentation stimulators.” Journal of Neuroscience Methods (2003) DOI: 10.1016/s0165-0270(02)00326-6
Molliver, Derek C. et al. “The ADP receptor P2Y1 is necessary for normal thermal sensitivity in cutaneous polymodal nociceptors.” Molecular Pain (2011) DOI: 10.1186/1744-8069-7-13
Luu et al. “Modulation of SUR1 KATP Channel Subunit Activity in the Peripheral Nervous System Reduces Mechanical Hyperalgesia after Nerve Injury in Mice” International Journal of Molecular Science (2019) DOI: 10.3390/ijms20092251
Neubarth et al. “Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception” Science (2020) DOI: 10.1126/science.abb2751
Dieudonné, Alexandre et al. “Encoding properties of the mechanosensory neurons in the Johnston’s organ of the hawk moth, Manduca sexta.” The Journal of Experimental Biology (2014) DOI: 10.1242/jeb.101568
Khalsa, Partap S., Ce Zhang, and Yi-Xian Qin. “Encoding of location and intensity of noxious indentation into rat skin by spatial populations of cutaneous mechano-nociceptors.” Journal of Neurophysiology (2000) DOI: 10.1152/jn.2000.83.5.3049
Ge, Weiqing, and Partap S. Khalsa. “Encoding of compressive stress during indentation by group III and IV muscle mechano-nociceptors in rat gracilis muscle.” Journal of Neurophysiology (2003) DOI: 10.1152/jn.00624.2002
Reed, Jamie L. et al. “Effects of spatiotemporal stimulus properties on spike timing correlations in owl monkey primary somatosensory cortex.” Journal of Neurophysiology (2012) DOI: 10.1152/jn.00414.2011
Jankowski, Michael P. et al. “Dynamic changes in heat transducing channel TRPV1 expression regulate mechanically insensitive, heat sensitive C-fiber recruitment after axotomy and regeneration.” The Journal of Neuroscience (2012) DOI: 10.1523/JNEUROSCI.3148-12.2012
Zhao and Levy “Dissociation between CSD-Evoked Metabolic Perturbations and Meningeal Afferent Activation and Sensitization: Implications for Mechanisms of Migraine Headache Onset” The Journal of Neuroscience (2018) DOI: 10.1523/JNEUROSCI.0115-18.2018
Grayson et al. “Depiction of Oral Tumor-Induced Trigeminal Afferent Responses Using Single-Fiber Electrophysiology” Scientific Reports (2019) DOI: 10.1038/s41598-019-39824-9
Qi, Huixin et al. “Cortical neuron response properties are related to lesion extent and behavioral recovery after sensory loss from spinal cord injury in monkeys.” The Journal of Neuroscience (2014) DOI: 10.1523/JNEUROSCI.4954-13.2014
Milenkovic, Nevena et al. “A somatosensory circuit for cooling perception in mice.” Nature Neuroscience (2014) DOI: 10.1038/nn.3828